Принцип действия лидара. Лидары Строительство и горное дело


Научно-исследовательская работа студента (УНИРС) по теме:

«Зеркальные схемы лидарных объективов»

Санкт-Петербург

Введение

1. Принцип действия лидара

2. Устройство лидара

3. Оптические схемы объективов лидаров

3.1 Объектив Ньютона

3.2 Объектив Кассегрена

3.3 Объектив Грегори

Заключение

Введение

Термин “лидар” является аббревиатурой английского выражения light identification, detection and ranging (обнаружение и определение дальности с помощью света).

Лидар - технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах.

Как прибор, лидар представляет собой оптический локатор для дистанционного зондирования воздушных и водных сред. Также к лидарам относят оптические локаторы, которые позволяют дистанционно получать информацию о твердых объектах.

Лидары востребованы и пользуются популярностью благодаря достоинствам используемых в них лазерах:

· Когерентность излучения

· Малая длина волны излучения и, как следствие, малые потери из-за расходимости

· Мгновенная мощность излучения

Совокупность этих свойств делает использование лидара незаменимым на дистанциях от сотен метров до нескольких километров.

1. Принцип действия лидара

Импульсное излучение лазера посылается в атмосферу. Затем, рассеянное атмосферой в обратном направлении, излучение собирается телескопом и регистрируется фотоприемником с последующей оцифровкой сигналов.

импульсный лидар телеобъектив оптический

Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени, необходимый для возврата импульса. Свет движется с постоянной и известной скоростью, поэтому лидар может вычислить расстояние между ним и цели с высокой точностью.

Существуют две основные категории импульсных лидаров: микроимпульсные и высокоэнергетические системы.

Микроимпульсные лидары работают на более мощной компьютерной технике с большими вычислительными возможностями.

Эти лазеры меньшей мощности и классифицируются как "безопасные для глаз", что позволяет использовать их практически без особых мер предосторожности.

Лидары с большой энергией импульса в основном применяются для исследования атмосферы, где они часто используются для измерения различных параметров атмосферы, таких как высота, наслоение и плотность облаков, свойства частиц облака, температуру, давление, ветер, влажность и концентрацию газов в атмосфере.

2 . Устройство лидара

Большинство лидаров состоит из трех частей:

· Передающая часть

· Приемная часть

· Система управления

Передающая часть (а) лидара содержит источник излучения - лазер и оптическую систему для формирования выходного лазерного пучка, т.е. для управления размером выходного пятна и расходимостью пучка.

В абсолютном большинстве конструкций излучателем служит лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и длины волн:

1550 нм -- инфракрасное излучение, невидимое ни глазу человека, ни типичным приборам ночного видения. Глаз не способен сфокусировать эти волны на поверхности сетчатки, поэтому травматический порог для волны 1550 существенно выше, чем для более коротких волн. Однако риск повреждения глаз на деле выше, чем у излучателей видимого света -- так как глаз не реагирует на ИК излучение, то не срабатывает и естественный защитный рефлекс человека

1064 нм -- ближнее инфракрасное излучение неодимовых и иттербиевых лазеров, невидимое глазу, но обнаружимое приборами ночного видения

532 нм -- зелёное излучение неодимового лазера, эффективно «пробивающее» массы воды

355 нм -- ближнее ультрафиолетовое излучение

Приёмная часть (б) состоит из объектива (телескоп), спектрального и/или пространственных фильтров, поляризационного элемента и фотодетектора. Излучение, отраженно-рассеянное от исследуемого объекта, концентрируется приемной оптикой (телескопом), а затем проходит через анализатор спектра. Этот прибор служит для выделения интервала длин волн, в котором проводятся наблюдения, и, следовательно, для отсечки фонового излучения на других длинах волн. Анализатор может представлять собой либо сложный, тщательно настраиваемый моно- или полихроматор, либо набор узкополосных фильтров, включая фильтр отсечки излучения на длине волны лазерного передатчика.

Излучатель и приемный блок могут быть далеко разнесены друг от друга или выполнены в едином блоке, что в последние годы является обычным. Оси излучателя и приемника могут быть совмещены (коаксиальная схема) или разнесены (биаксиальная схема).

Система управления(в) выполняет следующие задачи:

ѕ Управление режимом работы лидара;

ѕ Управление частотой зондирующего излучения лазера;

ѕ Измерение энергии излучения в выходящем и принимаемом двухчастотном лазерном пучке на обеих частотах;

ѕ Обработка результатов, т.е. получение спектральных характеристик атмосферы, определение наличия и концентраций примесей по имеющимся в базе данных компьютера «спектральным портретам» молекул;

ѕ Управление системой наведения лидара на исследуемый объект.

В своем исследовании я решил подробно рассмотреть схемы объективов, используемых в различных лидарах.

3 . Оптические схемы объективов лидаров

Обратный сигнал от исследуемого объекта должен быть перехвачен приемным объективом лидара, отфильтрован (пространственно и спектрально) и направлен на чувствительную площадку фотоприемника. Все это должно быть сделано с максимальной эффективностью, без значительных потерь полезного светового сигнала, собранного объективом, и с максимальным подавлением всех помех, зашумляющих сигнал. Проследим прохождение полезного сигнала через приемную систему и рассмотрим отдельно каждый элемент этой системы.

Лазер освещает на объекте пятно, размер которого определяется расходимостью пучка 2 и расстоянием до объекта R: D=2Rtg2R. Часть отраженного и рассеянного в обратном направлении излучения собирается объективом, как показано на рис.: (лазер и приемный объектив соосны).

Показаны только крайние лучи пучков от точек в пятне, попадающих в объектив. При больших расстояниях лучи от точки практически параллельны друг другу. Назначение объектива - собрать достаточное количество света от пятна и спроецировать пятно на фотоприемник. Поэтому основными параметрами объектива являются светособирающая площадь, фокусное расстояние и поле зрения. Для космических лидаров, когда расстояние до исследуемых слоев атмосферы или земли достигает сотен километров, необходимо использовать объективы с большим диаметром 1…3 м и даже больше, чтобы собрать достаточно света, особенно при работе в режимах комбинационного рассеяния или дифференциального поглощения. Диаметр d и фокусное расстояние f" определяют светосилу объектива (относительное отверстие d/f"). Чем светосильнее система, тем меньше размер изображения, которое она формирует. Поле зрения объектива определяется углом, под которым луч от крайней точки пятна проходит через центр входного зрачка объектива (на рис.). Размер изображения (не более размера фотоприемника), эквивалентное фокусное расстояние (с учетом дополнительных перепроецирующих элементов в спектральном блоке приемника) и угол поля зрения связаны соотношением 2a = 2f"tg, которое позволяет выбрать параметры конкретных схем и подобрать необходимые элементы. Во многих случаях пятно проецируется не на фотоприемник непосредственно, а в плоскость полевой диафрагмы (первичное изображение), которая ограничивает поле зрения объектива. Регулируя размеры полевой диафрагмы, можно изменять эффективный размер пятна, проецируемого на фотоприемник. Другими словами, она позволяет менять пространственное разрешение измерений, а также уменьшать шумовую засетку от многократно рассеянного света. Перепроецирование первичного изображения также является способом борьбы с рассеянным внутри объектива светом. Когда полевая диафрагма имеет максимальный размер, производят взаимную юстировку лазера и приемного объектива лидара (по максимуму принятого сигнала). При измерениях диафрагма имеет минимальный размер. Диафрагма обычно бывает ирисовая или в виде диска с отверстиями разного диаметра.

Поскольку лидар работает с удаленными объектами, объектив должен строить изображение практически из бесконечности на конечное расстояние (в фокальной плоскости). Т.е. используются телеобъективы. Оптический расчет телеобъектива производят с учетом того, что аберрационное размытие края изображения должно быть минимальным или приемлемым с точки зрения световых потерь (виньетирование полевой диафрагмой). В системах типа дальномеров, сканеров, батиметров диаметр объектива небольшой - от 15 до 150 мм. Поэтому объективы обычно линзовые.

Объективы, используемые в лидарах:

· Зеркальные (рефлекторы) - используют в качестве светособирающего элемента зеркало.

· Зеркально - линзовые (катадиоптрические) - в качестве оптических элементов используются и зеркала, и линзы. Стоит отметить, что линзы по размеру сравнимы с главным зеркалом и служат для коррекции формируемого им изображения.

Зеркала можно сделать облегченными, что важно для авиационных и особенно космических систем. Зеркальные системы строят по классическим схемам телескопов: Ньютона), Грегори и Кассегрена. После первичного фокуса условно приведен линзовый объектив, что означает наличие некоторой дополнительной оптики в приемной системе. Зеркальные системы всегда имеют центральное экранирование, даже в схеме Ньютона, в которой в фокусе на оси размещен приемник. При небольших полях зрения в единицы угловых секунд и малых относительных отверстиях (d/f" менее 1:10) вместо параболоида в схеме Ньютона используют сферу, что предпочтительно из экономических соображений. Из-за невысоких требований к качеству изображения (надо только собрать энергию) иногда удается заменить вторичное гиперболическое зеркало на сферическое. Возможны также варианты схемы типа Кассегрена с главным сферическим зеркалом и вторичным асферическим зеркалом высокого порядка. Такие схемы полезны для космических лидаров с большими телескопами.

Варианты взаимного расположения лазера и приемного телескопа:

В первой схеме для совмещения оптических осей используется тыльная поверхность диагонального плоского зеркала. Во второй схеме приемный телескоп используется и как формирующий, что требует ужесточения требований к его качеству (иначе лазерный пучок сильно разойдется). Кроме того, в ней неизбежны потери из-за использования светоделителя. В третьей схеме используются отверстия в главном и диагональном (или вторичном) зеркалах. Центральные зоны всегда нерабочие. Используют также схемы, в которых оси лазера и телескопа не совмещены - параллельны или взаимно наклонены. Такие схемы не позволяют максимально эффективно использовать энергию лазерного пучка, но позволяют избавиться от яркого пятна на оси (почти нулевое поле зрения), которое может вызвать перенасыщение приемника. При энергетических расчетах следует учитывать гауссово распределение энергии в лазерном пучке

3.1 Объектив Ньютона

Данная схема была изобретена Исааком Ньютоном в 1668 году. Здесь главное (параболическое) зеркало направляет излучение на небольшое плоское диагональное зеркало, расположенное вблизи фокуса. Оно, в свою очередь, отклоняет пучок излучения за пределы трубы, где он попадает на приемное устройство.

Данная схема обладает минимальным количеством оптических элементов, что обуславливает простоту юстировки, невысокие требования к обработке зеркал и невысокую стоимость изготовления. Главное зеркало в силу своего большого размера требует времени на термостабилизацию. Также требуется периодическая подстройка зеркал, склонная утрачиваться при транспортировке и в процессе эксплуатации. Система несвободна от аберрации комы.

Объектив Ньютона используется во многих лидарах, рассмотрим некоторые из них:

1) Многоволновый рамановский лидар MRL-400

В основу работы этого лидара положено явление комбинационное рассеяния света (эффект Рамана) -- неупругое рассеяние оптического излучения на молекулах вещества (твёрдого, жидкого или газообразного), сопровождающееся заметным изменением частоты излучения. В спектре рассеянного излучения появляются спектральные линии, которых нет в спектре первичного (возбуждающего) света. Число и расположение появившихся линий определяется молекулярным строением вещества.

Излучение лазера телескопируется внеосевым параболическим зеркальным коллиматором. Лазер вместе с коллиматором крепится на приемном телескопе, что позволяет проводить измерения под любым углом к горизонту.

структура лидара MRL-400

Источник излучения: Nd:YAG лазер Quantel Brilliant с генератором третьей гармоники

Энергия в импульсе: 300/300/200 мДж - 1064/532/355 нм

Частота повторения: 10 Гц

Внеосевой параболический зеркальный коллиматор с коэффициентом увеличения 5. Диэлектрические зеркальные покрытия обеспечивают работу коллиматора на длинах волн 355, 532, 1064 нм.

Телескоп Ньютона с апертурой 400 мм и фокусным расстоянием 1200 мм.

2) Многоволновый аэрозольный лидар PL-200

структура лидара PL-200

Источник излучения: Nd:YAG лазер с генератором третьей гармоники.

Энергия на длине волны 355 нм: 70 мДж

Частота повторения: 25 Гц

Расходимость пучка: < 1 мрад

Коллиматор: Внеосевой параболический коллиматор с диэлектрическими покрытиями и коэффициентом увеличения 5 предназначен для одновременного телескопирования излучаемых длин волн (1064, 532, 355 нм).

В лидаре используется телескоп Ньютона с апертурой 300 мм. Главное зеркало является параболическим с фокальным расстоянием 970 мм.

3.2 Объектив Кассегрена

Схема была предложена Лореном Кассегреном в 1672 году. Главное зеркало большего диаметра (вогнутое; в оригинальном варианте параболическое) отбрасывает излучение на вторичное выпуклое меньшего диаметра (обычно гиперболическое). Вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Традиционный рефлектор Кассегрена сложен в производстве (сложные поверхности зеркал - парабола, гипербола), а также имеет недоисправленную аберрацию комы. Последний недостаток исправлен в различных модификациях схемы Кассегрена.

Из зеркальных объективов построенный по схеме Кассегрена пользуется наибольшей популярностью благодаря сочетанию компактности и большого фокусного расстояния.

Рассмотрим некоторые лидары, в которых используется приёмный телескоп, построенный по схеме Кассегрена:

1) Стационарный лидарный комплекс МВЛ-60

Многоволновой лидар МВЛ-60 предназначен для оперативного дистанционного анализа характеристик атмосферного аэрозоля и облачных образований в атмосфере с помощью лазера, работающего на длинах волн 1064 (ИК), 532 (зеленый) и 355 (УФ) нм.

Приемная антенна лидара представляет собой телескоп, чаще всего зеркальный, построенный обычно по схеме Ньютона или Кассегрена. В телескопе лидара МВЛ-60 с диаметром главного параболического зеркала 60 см реализованы обе эти схемы.

При работе в качестве приемной антенны лидара в телескопе реализуется схема Кассегрена, когда принятый отраженный сигнал лазера попадает вначале на главное параболическое зеркало, затем на вторичное гиперболическое зеркало, а далее через отверстие в центре параболического зеркала в блок анализатора, где затем разводится по разным фотоприемникам и регистрируется компьютером.

При работе в качестве обычного астрономического прибора в телескопе реализуется схема Ньютона: на оптическую ось главного параболического зеркала вводится плоское зеркало, при помощи которого принятое главным зеркалом изображение выводится под углом 90 град. вдоль поворотной оси телескопа. В этом фокусе Ньютона можно поместить окуляр либо видеокамеру и получать изображения объектов звездного неба.

2) Многоволновой лидар с Рамановскими каналами

Излучатель импульсный: Nd:YAG лазер

Длина волны:1064, 532 и 355 нм

Энергия импульса: 100/55/30 мДж

Длительность импульса: 10 нс

Частота посылки импульсов: 10 Гц

Диаметр лазерного пучка (расширенный): 50 мм

Расходимость лазерного излучения: 0.3 мрад

Телескоп (диаметр): Кассегрен, 300 мм первичное зеркало

Угол приема излучения: 0.6 - 5 мрад

Длины волн упругого рассеяния: 1064, 532, 532 деполяризация и 355 нм

Рамановские длины волн: 387, 407, 607 нм

3 . 3 Объектив Грегори

Данная схема была изобретена Джеймсом Грегори в 1663 году. В системе Грегори излучение от главного вогнутого параболического зеркала направляется на небольшое вогнутое эллиптическое зеркало, которое отражает пучок в фотоприемное устройство, помещённое в центральном отверстии главного зеркала. Наличие вторичного зеркала удлиняет фокусное расстояние и тем самым даёт возможность применять большие увеличения.

Размер приемного телескопа, построенного по схеме Грегори, получается больше, чем телескоп Ньютона и почти вдвое больше, чем объектив Кассегрена, что увеличивает экранирование, усложняет юстировку и её сохранность, транспортировку и эксплуатацию в целом.

Данная схема не получила такого распространения, как схемы Ньютона и Кассегрена, так как при прочих равных ее недостатки более существенны, и используется в некоторых специфических случаях.

Заключение

В процессе изучения зеркальных объективов, используемых в лидарах, и сравнения между собой различных схем, я сделал следующий вывод:

Зеркальные объективы имеют ряд преимуществ (по сравнению с линзовыми):

ѕ Высокая светосила и разрешающая способность

ѕ Отсутствие хроматических аберраций у зеркал

ѕ Высокий коэффициент светопропускания

ѕ При сравнительно несложной конструкции зеркальных систем можно получить достаточно совершенную коррекцию сферической аберрации

ѕ Зеркальные системы не содержат преломляющих поверхностей и поэтому удобны для использования в ИК и УФ областях спектра

Но кроме преимуществ зеркальные объективы имеют и недостатки:

ѕ Сложность изготовления и контроля асферических поверхностей зеркал

ѕ Сложность юстировки зеркальных систем

ѕ Сложности, связанные с использованием больших зеркал (влияние погодных условий, необходимость термостабилизации)

ѕ Зеркальные системы, как правило, имеют большую кому, что уменьшает полезное поле системы. Данный недостаток устраняют применением зеркально - линзовых схем.


Подобные документы

    Призменный монокуляр: понятие, назначение, особенности конструкции. Рассмотрение оптической схемы монокуляров с призменными системами О. Малафеева, основные элементы: объектив, окуляр. Этапы аберрационного расчета окуляра с призмой в обратном ходе лучей.

    курсовая работа , добавлен 18.01.2013

    Габаритный расчет оптической системы прибора. Обоснование компонентов микроскопа. Исследование оптический системы объектива на ЭВМ. Расчет конструктивных параметров. Числовая апертура объектива в пространстве. Оптические параметры окуляра Гюйгенса.

    курсовая работа , добавлен 19.03.2012

    Фотоаппарат как оптический прибор. Фокусное расстояние фотообъектива. Поле зрения фотообъектива. Светосила объектива. Просветляющие покрытия. Стандартный ряд относительных отверстий. Разрешающая способность фотообъектива и гиперфокальное расстояние.

    презентация , добавлен 30.01.2015

    Многообразие рынка оптических приборов. Методы контрастирования изображения. Предметные и покровные стекла. Устройства защиты объектива. Система призм и зеркал. Счетные камеры и измерительные приспособления. Современные прямые металлургические микроскопы.

    реферат , добавлен 27.11.2014

    Идеальная оптическая система. Расчет призмы, выбор окуляра. Осесимметричная и пространственная оптическая система. Конструкционные параметры, аберрация объектив и призма. Расчет аберраций монокуляра. Выпуск чертежа сетки. Триора пространства предметов.

    контрольная работа , добавлен 02.10.2013

    Виды световых микроскопов, их комплектация. Правила использования и ухода за микроскопом. Классификация применяемых объективов в оптических приборах. Иммерсионные системы и счетные камеры световых микроскопов. Методы контрастирования изображения.

    реферат , добавлен 06.10.2014

    Роль электротехники в развитии судостроения. Функциональная схема управления асинхронным двигателем с короткозамкнутым ротором. Принцип работы электрической схемы вентилятора. Технология монтажа электрической схемы, используемые материалы и инструменты.

    курсовая работа , добавлен 12.12.2009

    Теоретический анализ основных контуров газонаполненного генератора импульсных напряжений, собранного по схеме Аркадьева-Мракса. Расчет разрядной схемы ГИН, разрядного контура на апериодичность. Измерение тока и напряжения ГИНа. Конструктивное исполнение.

    курсовая работа , добавлен 19.04.2011

    Выбор схемы генератора импульсов напряжения и общей компоновки конструкции. Расчет разрядного контура генератора, разрядных, фронтовых и демпферных сопротивлений, коммутаторов импульсной испытательной установки. Разработка схемы управления установкой.

    курсовая работа , добавлен 29.11.2012

    Понятие и сферы практического использования электронно-оптических преобразователей как устройств, преобразующих электронные сигналы в оптическое излучение или в изображение, доступное для восприятия человеком. Устройство, цели и задачи, принцип действия.

Вам необходимо документировать обстоятельства ночной аварии на дороге? Проектируете ирригационные системы в засушливых районах? Или изучаете возможные археологические памятники, скрытые лесом или другими деталями? Традиционные методы 3D-съемки и получения геопространственных данных затратны по времени и денежным средствам. Но теперь есть более эффективные и быстрые решения для таких целей.

LiDAR (Light Detection and Ranging) - это технология дистанционного зондирования, которая использует быстрые лазерные импульсы, чтобы создать модель рельефа. LiDAR отлично подходит, когда необходимо создать цифровые отображения поверхности земли с высоким разрешением для различных целей. В прошлом организации были вынуждены использовать в каждом случае отдельные системы со своими особенностями.

Теперь у них есть возможность пользоваться системой LiDAR, которую устанавливают на беспилотники, чтобы получилось единое устройство для 3D-картографирования. Систему ScanLook LiDAR серии А устанавливают на летающую платформу DJI Matrice 600, что позволяет получить для работы эффективное, универсальное и точное решение для 3D-зондирования на основе беспилотных технологий.

Примеры практического применения связки LiDAR и дронов

Моделирование ландшафта

Простейший пример, когда новые технологии могут существенно облегчить и сделать еще эффективнее работу - уборка мусора и грязи. Известно, что оплата обычно производится за квадратный метр, но расчеты не всегда бывают точны, особенно, если имеется большой разброс мусора, листьев, а на территории также растут кусты и деревья. LiDAR предлагает значительную экономию по сравнению с методами методам наземного исследования.


LiDAR значительно сокращает различного рода затраты на методы исследования рельефа. Применяя метод дистанционного исследования объектов разного типа, включая траву, листья или деревья, LiDAR может определить их положение, скорость перемещения (для движущихся объектов) и другие характеристики. Для этого используется пульсирующий лазерный луч, который отражается от поверхности объектов. Результатом такого процесса становится 3D-модель топографических контуров ландшафта, с которой затем могут работать пользователи. Если же подключить к процедуре исследования дрон Matrice 600 со ScanLock, то сканирование будет происходить со скоростью более 4 тыс. кв. м. в минуту. А теперь представьте, сколько можно сделать работы за 20 минут полетного времени?

Документирование ЧП и несчастных случаев

LiDAR - это активная система, которая использует для создания образов нужных объектов ультрафиолет и ближний инфракрасный диапазон. Это важно, если обстоятельства не позволяют задействовать для качественного картографирования внешнее освещение. Например, такой метод может потребоваться для съемок обстоятельств ночной автомобильной аварии. Для этого лучше всего задействовать дрон Matrice 600 с технологией ScanLook, чтобы буквально за один полет над местом аварии зафиксировать и обработать всю необходимую визуальную информацию.


Поскольку предлагаемое решение базируется на беспилотных технологиях, то пользователи практически немедленно получают точную информацию, подкрепленную визуальными деталями. Затем все это можно использовать в качестве доказательства в судебных процессах. Кроме этого, высокая скорость обследования с помощью воздушного сканирования помогает быстрее начать процесс эвакуации раненых или погибших людей, поврежденных автомобилей, а также быстрее приступать к уборке территории. Таким образом можно за сравнительно короткое время освободить проезжую часть для автомобилей, что особенно важно на оживленных трассах, а также сэкономить значительные средства на всех этапах работы.

Сельское хозяйства и ландшафтная планировка

Другой пример успешного применения новых технологий 3D-картографирования - большие фермы, где требуется создавать эффективную ирригационную систему. Например, на больших плантациях риса фермерам приходится создавать водозащитные насыпи. Это требует точного знания рельефа и особенностей почвы. Иначе вся создаваемая система может оказаться неэффективной и бесполезной. И опять оптимальным решением становится дрон Matrice 600 с установленной на нем технологией ScanLock. Сбор данных будет происходить со скоростью 183 метра за один проход. Процесс работы с одним большим полем не займет много времени. При этом не нужно, как раньше, ждать, когда обрабатываемые поля высохнут, чтобы на них можно было бы вывести соответствующую технику для сбора данных.

Археология

Там, где традиционные методы обследования больших, ценных с исторической точки зрения, ландшафтов требовали не одного года работы, теперь можно использовать технологию LiDAR, чтобы выполнить процесс по 3D-картографированию за считанные минуты. И снова наилучшим вариантом для такой процедуры будет установка ScanLock на дрон Matrice 600. “Потерянные” места и целые древние города будут открыты за самое короткое время.

Теги: Лидар, излучатель, сигнал, когерентный, некогерентный, сканирующая оптика

Лидары

Л идар (LIDAR англ. Light Identification Detection and Ranging - световое обнаружение и определение дальности) - технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах.

Лидар как прибор представляет собой активный дальномер оптического диапазона. Сканирующие лидары в системах машинного зрения формируют двумерную или трёхмерную картину окружающего пространства. «Атмосферные» лидары способны не только определять расстояния до непрозрачных отражающих целей, но и анализировать свойства прозрачной среды, рассеивающей свет. Разновидностью атмосферных лидаров являются доплеровские лидары, определяющие направление и скорость перемещения воздушных потоков в различных слоях атмосферы.

Принцип действия


Принцип действия лидара не имеет больших отличий от радара: направленный луч источника излучения отражается от целей, возвращается к источнику и улавливается высокочувствительным приёмником (в случае лидара - светочувствительным полупроводниковым прибором); время отклика прямо пропорционально расстоянию до цели.


Принцип действия лидара прост. Объект (поверхность) освещается коротким световым импульсом, и измеряется время, через которое сигнал вернется к источнику. Свет распространяется очень быстро - 3∙10 8 м/с. Однако он возвращается с некоторой задержкой, которая зависит от расстояния до объекта.

Расстояние, которое прошел фотон на пути до объекта и обратно, можно рассчитать по формуле:

L = c ∙ t пролёта 2

Оборудование, необходимое для измерения этого малого промежутка времени, должно работать чрезвычайно быстро.

Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени, необходимый для возврата импульса. Свет движется с постоянной скоростью, поэтому лидар может вычислить расстояние между ним и цели с высокой точностью.

Во всех случаях радиотехническая система обнаруживает сигналы на фоне помех. Считается, что полезный сигнал имеет частоту, равную резонансной частоте настройки системы ω c = ω 0 . Начальная фаза равна нулю:

U c t = U cm sin ω 0 t

Сумма сигнала и помехи:

U сп t = u с t + u п t = U cm + U п1 sin ω 0 t + U п2 cos ω 0 t

где U п1 и U п2 – амплитуды помех.

  • Некогерентное детектирование (прямой метод измерения): Реагирование происходит на амплитуду суммарного колебания и помехи U спm .Превышением сигнала над помехой называется следующее отношение: m нкг 2 = U cm 2 U п1 2 + U п2 2 = U cm 2 2σ 2 где σ 2 – дисперсия каждой из амплитуд помехи U п1 и U п2
  • Когерентное детектирование: Полностью исключает ортогональную к сигналу составляющую помех. Оно предусматривает реагирование лишь на колебание, равное сумме амплитуды сигнала Ucm и синфазной составляющей помехи U п1. Превышением сигнала над помехой при когерентном обнаружении называется отношение m нкг 2 = U cm 2 U _ п1 2 , где U _ п1 2 – дисперсия амплитуды синфазной составляющей. Когерентные системы лучше всего подходят для доплеровских или фазочувствительных измерений и, как правило, используют оптическое гетеродинное детектирование. Это позволяет им работать при гораздо меньшей мощности, но при этом конструкция фотоприемной схемы намного сложнее.

Существуют две основные категории импульсных лидаров: микроимпульсные и высокоэнергетические системы.

  • Микроимпульсные лидары работают на более мощной компьютерной технике с большими вычислительными возможностями. Эти лазеры меньшей мощности и классифицируются как "безопасные для глаз", что позволяет использовать их практически без особых мер предосторожности.
  • Лидары с большой энергией импульса в основном применяются для исследования атмосферы, где они часто используются для измерения различных параметров атмосферы, таких как высота, наслоение и плотность облаков, свойства частиц облака, температуру, давление, ветер, влажность и концентрацию газов в атмосфере.

В отличие от радиоволн, эффективно отражающихся только от достаточно крупных металлических целей, световые волны подвержены рассеиванию в любых средах, в том числе в воздухе, поэтому возможно не только определять расстояние до непрозрачных (отражающих свет) дискретных целей, но и фиксировать интенсивность рассеивания света в прозрачных средах. Возвращающийся отражённый сигнал проходит через ту же рассеивающую среду, что и луч от источника, подвергается вторичному рассеиванию, поэтому восстановление действительных параметров распределённой оптической среды - достаточно сложная задача, решаемая как аналитическими, так и эвристическими методами.

Излучатель

В абсолютном большинстве конструкций излучателем служит лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и следующие длины волн (в нанометрах):

  • 1550 нм - инфракрасное излучение, невидимое ни глазу человека, ни типичным приборам ночного видения. Глаз не способен сфокусировать эти волны на поверхности сетчатки, поэтому травматический порог для волны 1550 существенно выше, чем для более коротких волн
  • 1064 нм - ближнее инфракрасное излучение неодимовых и иттербиевых лазеров, невидимое глазу, но обнаружимое приборами ночного видения
  • 532 нм - зелёное излучение неодимового лазера, эффективно «пробивающее» массы воды
  • 355 нм - ближнее ультрафиолетовое излучение

Также возможно использование вместо коротких импульсов непрерывной амплитудной модуляции излучения переменным напряжением.

Сканирующая оптика

Простейшие атмосферные лидарные системы не имеют средств наведения и направлены вертикально в зенит.

Для сканирования горизонта в одной плоскости применяются простые сканирующие головки. В них неподвижные излучатель и приёмник также направлены в зенит; под углом 45° к горизонту и линии излучения установлено зеркало, вращающееся вокруг оси излучения. В авиационных установках, где надо сканировать полосу, перпендикулярную направлению полёта самолёта-носителя, ось излучения - горизонтальна. Для синхронизации мотора, вращающего зеркало, и средств обработки принимаемого сигнала используются точные датчики положения ротора, а также неподвижные реперные риски, наносимые на прозрачный кожух сканирующей головки.

Сканирование в двух плоскостях добавляет к этой схеме механизм, поворачивающий зеркало на фиксированный угол с каждым оборотом головки - так формируется цилиндрическая развёртка окружающего мира. При наличии достаточной вычислительной мощности можно использовать жёстко закреплённое зеркало и пучок расходящихся лучей - в такой конструкции один «кадр» формируется за один оборот головки.

Приём и обработка сигнала

Важную роль играет динамический диапазон приёмного тракта. Чтобы избежать перегрузки приёмника интенсивной засветкой от рассеивания в «ближней зоне», в системах дальнего радиуса действия применяют высокоскоростные механические затворы, физически блокирующие приёмный оптический канал. В устройствах ближнего радиуса со временем отклика менее микросекунды такой возможности нет.

Современное состояние и перспективы

Исследования атмосферы

Исследования атмосферы стационарными лидарами является наиболее массовой отраслью применения технологии. В мире развёрнуто несколько постоянно действующих исследовательских сетей (межгосударственных и университетских), наблюдающих за атмосферными явлениями.

Раннее оповещение о лесных пожарах

Лидар, размещённый на возвышенности (на холме или на мачте) и сканирующий горизонт, способен различать аномалии в воздухе, порождённые очагами пожаров. В отличие от пассивных инфракрасных систем, распознающих только тепловые аномалии, лидар выявляет дымы по аномалиям, порождаемым частицами горения, изменению химического состава и прозрачности воздуха и т. п.

Исследования Земли

Вместо установки лидара на земле, где принимаемый отражённый свет будет зашумлён из-за рассеяния в загрязнённых, нижних слоях атмосферы, «атмосферный» лидар может быть поднят в воздух или на орбиту, что существенно улучшает соотношение сигнал-шум и эффективный радиус действия системы.

Строительство и горное дело

Лидары, сканирующие неподвижные объекты (здания, городской ландшафт, открытые горные выработки), относительно дёшевы: так как объект неподвижен, то особого быстродействия от системы обработки сигнала не требуется, а сам цикл обмера может занимать достаточно долгое время (минуты).

Морские технологии

Измерение глубины моря . Для этой задачи используется дифференциальный лидар авиационного базирования. Красные волны почти отражаются поверхностью моря, тогда как зелёные частично проникают в воду, рассеиваются в ней, и отражаются от морского дна. Технология пока не применяется в гражданской гидрографии из-за высокой погрешности измерений и малого диапазона измеряемых глубин.

Поиск рыбы . Аналогичными средствами можно обнаруживать признаки косяков рыбы в приповерхностных слоях воды. Специалисты американской государственной лаборатории ESRL утверждают, что поиск рыбы лёгкими самолётами, оборудованных лидарами, как минимум на порядок дешевле, чем с судов, оборудованных эхолотами.

Спасение людей на море . В 1999 ВМС США запатентовали конструкцию авиационного лидара, применимого для поиска людей и человеческих тел на поверхности моря; принципиальная новизна этой разработки - в применении оптического маскирования отражённого сигнала, снижающего влияние помех.

Разминирование . Обнаружение мин возможно с помощью лидаров, непосредственно погруженных в воду (например, с буя, буксируемого катером или вертолётом), однако не имеет особых преимуществ по сравнению с активными акустическими системами (сонарами).

На транспорте

Определение скорости транспортных средств . В Австралии простейшие лидары используются для определения скорости автомобилей - так же, как и полицейские радары. Оптический «радар» существенно компактнее традиционного, однако менее надёжен в определении скорости современных легковых автомобилей: отражения от наклонных плоскостей сложной формы «запутывают» лидар.

Беспилотные транспортные средства . В 1987-1995 годах в ходе проекта EUREKA Prometheus, стоившего Европейскому союзу более 1 млрд долларов, были выработаны первые практические разработки беспилотных автомобилей. Наиболее известный прототип, VaMP (разработчик - Университет бундесвера в Мюнхене) не использовал лидары из-за недостатка вычислительной мощности тогдашних процессоров. Новейшая их разработка, MuCAR-3 (2006), использует единственный лидар кругового обзора, поднятый высоко над крышей машины, наравне с направленной мультифокальной камерой обзора вперёд и инерциальной навигационной системой.

Промышленные и сервисные роботы . Системы машинного зрения ближнего радиуса действия для роботов, основанные на сканирующем лидаре IBM, формируют цилиндрическую развёртку с углом охвата горизонта 360° и вертикальным углом зрения до +30..-30°. Собственно дальномер, установленный внутри сканирующей оптической головки, работает на постоянном излучении малой мощности, модулированном несущей частотой порядка 10 МГц. Расстояние до целей (при несущей 10 МГц - не более 15 м) пропорционально сдвигу фаз между опорным генератором, модулирующим источник света, и ответным сигналом.

Ru-Cyrl 18- tutorial Sypachev S.S. 1989-04-14 [email protected] Stepan Sypachev students

Всё ещё не понятно? – пиши вопросы на ящик

В данном разделе мы рассмотрим группу ОЭПиС с общей технологией получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеивания в прозрачных и полупрозрачных средах.

Эту группу оптических приборов объединяют под названием- Лида́р (транслитерация LIDAR англ. Light Identification, Detection and Ranging ) .

Устоявшийся перевод LIDAR как «лазерный радар» не вполне корректен, так как впервые аббревиатура LIDAR появилась в работе Миддлтона и Спилхауса «Метеорологические инструменты» 1953 года, задолго до изобретения лазеров. Первые лидары использовали в качестве источников света обычные или импульсные лампы со скоростными затворами, формировавшими короткий импульс. В современных системах ближнего радиуса действия (например, предназначенных для работы в помещениях) вместо лазеров используют обычные светодиоды. Однако именно применение лазера (обусловленное его свойствами: когерентности, высокой плотность и мощности излучения) позволило создать приборы с радиусами действия от сотен метров до сотен километров.

Первые полевые испытания носимого лазерного дальномера XM-23 с мощностью излучения 2.5 Вт и диапазоном измеряемых расстояний 200-9995 м прошли в 1963 году. Тогда же, в первой половине 1960-х годов, начались опыты по применению лидара с лазерным излучателями для исследования атмосферы. В 1969 году лазерный дальномер и мишень, установленная на Аполлоне-11, применялся для измерения расстояния от Земли до Луны. Четыре мишени, доставленные на Луну тремя «Аполлонами» и «Луноходом-2», и по сей день используются для наблюдения за орбитой Луны. В течение 1970-х годов, с одной стороны, отлаживалась технология лазерных дальномеров и компактных полупроводниковых лазеров, а с другой - были начаты исследования рассеяния лазерного луча в атмосфере..

Рассмотрение этой группы оптических приборов начнём с простейшего представителя-лазерного дальномера. Принцип работы основан на способности электромагнитного излучения распространяться с постоянной скоростью, что позволяет определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:

где R - расстояние до объекта, c - скорость света в вакууме, n - показатель преломления среды, в которой распространяется излучение, t - время прохождения импульса до цели и обратно.

Рисунок 132 Принцип работы лазерного дальномера.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Ясно, что чем короче импульс, тем лучше. Задача определения расстояния между дальномером и целью сводится к измерению соответствующего интервала времени между зондирующим сигналом и сигналом, отраженным от цели. Различают три метода измерения дальности в зависимости от того, какой характер модуляции лазерного излучения используется в дальномере: импульсный, фазовый или фазо-импульсный.
Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылают зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру, то он останавливает работу счетчика. По временному интервалу (задержке отраженного импульса) определяется расстояние до объекта.
При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону с помощью модулятора (электрооптического кристалла, изменяющего свои параметры под воздействием электрического сигнала). Обычно используют синусоидальный сигнал с частотой 10…150 МГц (измерительная частота). Отраженное излучение попадает в приемную оптику и фотоприемник, где выделяется модулирующий сигнал. В зависимости от дальности до объекта изменяется фаза отраженного сигнала относительно фазы сигнала в модуляторе. Измеряя разность фаз, определяют расстояние до объекта.
Общая структурная схема простейшего лидара представлена на рисунке 133 и схожа с прибором ночного видения, в современной военной технике они даже совмещаются.

Рисунок 133. Общая структурная схема простейшего лидара (1-лазер, 2-объект, 3-блок приёмника, 4- оптическая система ПОИ(телескопическая система), 5-ПОИ, 7-блок обработки и анализа, 7-блок вывода информации, 8- блок управления лазером.

На рисунке 134 представлен современный российский лазерный дальномер "Сажень-ТМ-Д" служащий для определения дальности до космических аппаратов, оснащенных лазерными ретрорефлекторами, и измерения угловых координат КА по отраженному солнечному излучению для расчета высокоточных параметров движения КА, а также получения фотометрической информации в видимом диапазоне длин волн.

В отличие от радиоволн, эффективно отражающихся только от достаточно крупных металлических целей, световые волны подвержены рассеиванию в любых средах, в том числе в воздухе, поэтому возможно не только определять расстояние до непрозрачных (отражающих свет) дискретных целей, но и фиксировать интенсивность рассеивания света в прозрачных средах.

Рисунок 134 Дальномер "Сажень-ТМ-Д"

Именно измерение интенсивности рассеяния лазерного излучения аэрозолем атмосферы дало второй сильный толчок для дальнейшего развития. Лидар посылает в атмосферу короткий импульс света и принимает обратно сигнал обратного рассеяния. Рассеяние света в атмосфере происходит как молекулами воздуха (Релеевское рассеяние), так и частицами аэрозоля. Таким образом, наличие аэрозоля в атмосфере увеличивает сигнал обратного рассеяния по сравнению с чистой атмосферой и концентрация аэрозоля может быть определена как функция расстояния и интенсивности сигнала на фоне чистой атмосферы. Несмотря на тот факт, что аэрозоли составляют не более 10 % от общей массы антропогенных загрязнителей атмосферы, потенциальный ущерб от этого типа загрязнителей, которые, как правило, представляют собой сильные токсиканты, существенно больше. «Атмосферные» лидары способны не только определять расстояния до непрозрачных отражающих целей, но и анализировать свойства прозрачной среды, рассеивающей свет. Разновидностью атмосферных лидаров являются доплеровские лидары , определяющие направление и скорость перемещения воздушных потоков в различных слоях атмосферы.

Физические принципы работы атмосферных лидаров мы с вами подробно рассматривали в разделе ИК газоанализаторов. Здесь мы остановимся на конструктивных особенностях лидаров данного типа. В качестве примера рассмотрим современную методику многоволнового лазерного дистанционного анализа опасных загрязнений атмосферы. Особенность заключается в том что лазерные источники могут одновременно генерировать излучение на нескольких длинах волн в одном направлении. Это позволяет:
проводить обнаружение и измерение концентраций нескольких компонент опасных примесей (до 6) одновременно в реальном масштабе времени;
существенно повысить точность измерения концентрации опасных примесей за счет уменьшения влияния временных флуктуаций принимаемого сигнала, обусловленных турбулентностью атмосферы.

В многоволновом лидаре в качестве базовых лазерных систем применяются импульсно-периодические лазеры на CO 2 и изотопах молекулы CO 2 (диапазон 9-11 мкм), а также могут использоваться их вторые (диапазон 4.5-5.5 мкм) и третьи (диапазон 3.0-3.4 мкм) гармоники, полученные при преобразовании частоты излучения базовых лазеров в нелинейных кристаллах типа AgGaSe 2 или ZnGeP 2 с эффективностью преобразования 5-10%. Принципиальным отличием от используемых в настоящее время стандартных схем дифференциального лазерного газоанализа, в которых определяемые компоненты воздуха детектируется одна за другой, в многоволновых лазерных системах они могут определяться практически одновременно за счет выхода в генерацию набора аналитических длин волн одновременно и их одновременного детектирования после прохождения атмосферного объема с повышенной концентрацией нескольких опасных газообразных веществ.

Схема применения лидара на основе многоволнового аммиачного лазера для контроля атмосферы приведен на рисунке 135. Блок – схема многоволнового лидара и его принципиальная оптическая схема приведены на рисунках 136 и 137.

Рисунок 135. Схема применения многоволнового лидара

Рисунок 136. Блок – схема многоволнового лидара

Рисунок 137. Принципиальная оптическая схема многоволнового лидара
(М – зеркала)

Многоволновой газоанализатор (дальность действия до 10км.), использующий новейшие методы дистанционного контроля, может эффективно использоваться в самых различных сферах производства и жизнедеятельности: контроль выбросов в атмосферу вблизи опасных химических производств;
контроль за газовыми и/или утечками на предприятиях ЯТЦ;
выявление предаварийных ситуаций, отслеживание обстановки по загрязненности атмосферы при аварийных ситуациях;
обеспечение безопасности важных объектов - правительственных зданий, военных объектов, АЭС и т.п.
дистанционный контроль (например, с борта самолета или беспилотного спутника) выбросов газов с объектов атомной промышленности в третьих странах с целью их идентификации, и следовательно, определения возможности этих стран по производству ядерного оружия;
определение динамики распространения ядовитых облаков в атмосфере при широкомасштабных авариях;

На рисунке 138 представлены двухволновый лидар ЛСА-2с и одноволновой лидар 4Р предназначенных для зондирования атмосферных аэрозолей и облаков.

Они имеют те же основные характерные блоки для лидаров:
-лазер-передатчик;
-передающая оптическая система;
-приемная оптическая система;
-спектроанализирующее и регистрирующее устройство (ФЭУ, CCD - камера, лавинный фотодиод);
-блок обработки сигнала;
-блок управления;
-система отображения полученной информации.

Рисунок 138. Двухволновый лидар ЛСА-2с и одноволновой лидар 4Р.

Как мы уже отмечали, основным излучателем в лидарах является лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и длины волн (в нанометрах):

§ 1550 нм - инфракрасное излучение, невидимое ни глазу человека, ни типичным приборам ночного видения. Глаз не способен сфокусировать эти волны на поверхности сетчатки, поэтому травматический порог для волны 1550 существенно выше, чем для более коротких волн. Однако риск повреждения глаз на деле выше, чем у излучателей видимого света - так как глаз не реагирует на ИК излучение, то не срабатывает и естественный защитный рефлекс человека

§ 1064 нм - ближнее инфракрасное излучение неодимовых и иттербиевых лазеров, невидимое глазу, но обнаружимое приборами ночного видения

§ 532 нм - зелёное излучение неодимового лазера, эффективно «пробивающее» массы воды

§ 355 нм - ближнее ультрафиолетовое излучение

Задачи решаемые применением Лидаров:

· Исследования атмосферы

Исследования атмосферы стационарными лидарами остаётся наиболее публичной отраслью применения технологии. В мире развёрнуто несколько постоянно действующих исследовательских сетей (межгосударственных и университетских), наблюдающих за атмосферными явлениями.

· Измерение скорости и направления воздушных потоков.

Теоретическое обоснование применения наземного доплеровского лидара для таких измерений было дано ещё в 1980-е годы. Принцип действия основан на использовании эффекта Доплера, согласно которому, частота принятого сигнала, отражённого от цели может отличаться от частоты излучённого сигнала и разница зависит от соотношения скоростей объектов относительно друг друга. В 2001 Alcatel предложил размещение лидаров на борту спутников, так, что «созвездие» спутников на орбите способно отслеживать движение воздушных масс в рамках целого континента, а в потенциале - на Земле в целом.

· Измерение температуры атмосферы . Разработано и реализовано на практике несколько основных методов измерения профилей температуры.

В первом методе используется резонансное рассеяние на атомах щелочных металлов, в частности, натрия, калия, а также железа. Облака атомов металлов находятся на высоте 85 - 100 км. Температура измеряется по доплеровскому уширению резонансных линий с помощью зондирования узкополосным подстраиваемым лазером. Первые измерения были осуществлены с помощью искусственных натриевых облаков, забрасываемых в атмосферу ракетами. Несмотря на то, что метод ограничен диапазоном высот, на которых присутствуют атомы металла, рассеянный сигнал оказывается относительно большим, и это дает возможность измерять температуру с точностью до 1.5 ˚К.

Второй метод - метод рэлеевского рассеяния (Rayleigh lidar), основан на нерезонансном рассеянии света на молекулах воздуха. Впервые он был применен в 1953 году в опытах с прожекторным зондированием атмосферы. Суть метода заключается в следующем. Если отсутствует аэрозольное рассеяние, то мощность обратно рассеянного сигнала прямо пропорциональна плотности воздуха, из которой можно расcчитать температуру. Разрежение воздуха с высотой позволяет использовать метод рэлеевского рассеяния на высотах не более 90 км. Нижняя граница высоты измерения (около 20-30 км) обусловлена присутствием в граничном слое большого количества аэрозоля, который значительно увеличивает рассеяние, но практически не влияет на плотность воздуха.

Третий метод основан на вращательном рамановском (комбинационном) рассеянии молекулами воздуха (Raman lidar). Когда температура увеличивается, интенсивность переходов с большими квантовыми числами возрастает, в то время как интенсивность линий вращательного рамановского спектра, соответствующих маленьким квантовым числам, уменьшается. Переходы с большими квантовыми числами соответствуют линиям рамановского спектра, расположенным дальше от центральной частоты. Температура определяется при использовании измерений в двух областях спектра с различной температурной зависимостью. Максимальная высота зондирования составляет около 30 км, погрешность измерения менее 1 ˚К до высоты 10 км . Так как в приемнике линия упругого рассеяния подавляется, то измерения можно проводить и в присутствии значительных концентраций аэрозолей.

· Раннее оповещение о лесных пожарах.

· Исследования Земли

Вместо установки лидара на земле, где принимаемый отражённый свет будет зашумлён из-за рассеяния в загрязнённых, нижних слоях атмосферы, «атмосферный» лидар может быть поднят в воздух или на орбиту, что существенно улучшает соотношение сигнал-шум и эффективный радиус действия системы. Первый полноценный орбитальный лидар был выведен на орбиту NASA в декабре 1994 года в рамках программы LITE (Lidar In-Space Technology Experiment). Двухтонный лидар LITE с метровым зеркальным телескопом, поднятый на высоту 260 км, «рисовал» на земле размытое пятно диаметром 300 м, что было явно недостаточно для эффективного отображения рельефа, и был исключительно «атмосферным».

· Космическая геодезия.

Сканируют рельеф земной поверхности с приемлемой разрешающей способностью.

· Авиационная геодезия.

Национальная океанографическая служба США (NOAA) систематически применяет авиационные лидары для топографической съёмки морского побережья.

Особое направление, применяемое на практике в сейсмоопасных районах США - дифференциальное измерение высот с целью выявления локальных подвижек земных масс в районе разломов. Ещё в 1996 с помощью лидара была открыта неизвестная ранее зона разлома возле Сиэтла.

Совсем не давно с помощью подобного лидара группе ученых из Хьюстонского университета возможно, удалось найти в джунглях Гондураса легендарный Золотой город.

Рисунок 139 Применениепрежде засекреченной военными
технологию лазерного картографирования.

· Строительство и горное дело

Строительство - обмеры зданий, контроль отклонения плоскостей стен и несущих колонн от вертикали (в том числе в динамике), анализ вибраций стен и остекления. Обмеры котлованов, создание трёхмерных моделей стройплощадок для оценки объёмов земляных работ.

Архитектура - построение трёхмерных моделей городской среды для оценки влияния предлагаемых новостроек на облик города.

· Морские технологии

Измерение глубины моря. Для этой задачи используется дифференциальный лидар авиационного базирования. Красные волны почти полностью отражаются поверхностью моря, тогда как зелёные частично проникают в воду, рассеиваются в ней, и отражаются от морского дна. Технология пока не применяется в гражданской гидрографии из-за высокой погрешности измерений и малого диапазона измеряемых глубин.

Поиск рыбы. Аналогичными средствами можно обнаруживать признаки косяков рыбы в приповерхностных слоях воды. Специалисты американской государственной лаборатории ESRL утверждают, что поиск рыбы лёгкими самолётами, оборудованных лидарами, как минимум на порядок дешевле, чем с судов, оборудованных эхолотами.

· Промышленные и сервисные роботы

Системы машинного зрения ближнего радиуса действия для роботов, основанные на сканирующем лидаре IBM, формируют цилиндрическую развёртку с углом охвата горизонта 360° и вертикальным углом зрения до +30..-30

· Военные технологии

Здесь лидары получили самое широкое распространение и выполняют функции ооптико-локационной локации, разведки, наведения на цель итп.

Рисунок 139. Обнаружитель атакующих ракет (ОАР), Оптико-локационная станция ОЛС-35

Рисунок 140. Средство национального технического контроля испытаний стратегического вооружения в соответствии с международными Договорами.

4.8 ИНТЕРФЕРОМЕТРЫ

Интерферометры - это измерительные приборы, действие которых основано на явлении интерференции.

Работа приборов построена на последовательном разложение пучка излучения (на два или большее количество когерентных пучков каждый из них проходит различные оптические пути) и последующим их сложением, в результате создаётся интерференционная картина, по которой можно установить смещение фаз пучков.

С помощью интерферометров производится измерение угловых размеров звезд и угловых расстояний между звездами, измерение показателей преломления газов и жидкостей, а также определение концентрации примесей в воздухе. Интерферометры используются для контроля качества оптических деталей и их поверхностей, для контроля чистоты обработки металлических поверхностей.

Так как в основе принципа работы интерферометров лежит явление интерференции света, начнём изучение данной группы приборов с изучения этого явления.

Интерференции света - перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.

Впервые явление интерференции было независимо обнаружено Робертом Бойлем (1627-1691 гг.) и Робертом Гуком (1635-1703 гг.). Они наблюдали возникновение разноцветной окраски тонких плёнок (интерференционных полос), подобных масляным или бензиновым пятнам на поверхности воды. В 1801 году Томас Юнг (1773-1829 гг.), введя «Принцип суперпозиции», первым объяснил явление интерференции света, ввел термин «интерференция» (1803). Он также выполнил первый демонстрационный эксперимент по наблюдению интерференции света, получив интерференцию от двух щелевых источников света (1802); позднее этот опыт Юнга стал классическим.

Рисунок 141. Опыт Юнга и Интерференция в тонкой плёнке.

Ещё один метод получения устойчивой интерференционной картины для света служит использование воздушных прослоек, основанное на одинаковой разности хода двух частей волны: одной - сразу отраженной от внутренней поверхности линзы и другой - прошедшей воздушную прослойку под ней и лишь затем отразившейся. Её можно получить, если положить плосковыпуклую линзу на стеклянную пластину выпуклостью вниз. При освещении линзы сверху монохроматическим светом образуется тёмное пятно в месте достаточно плотного соприкосновения линзы и пластинки, окружённое чередующимися тёмными и светлыми концентрическими кольцами разной интенсивности. Тёмные кольца соответствуют интерференционным минимумам, а светлые - максимумам, одновременно тёмные и светлые кольца являются изолиниями равной толщины воздушной прослойки. Измерив радиус светлого или тёмного кольца и определив его порядковый номер от центра, можно определить длину волны монохроматического света. Чем круче поверхность линзы, особенно ближе к краям, тем меньше расстояние между соседними светлыми или тёмными кольцами. Данная методика используется для контроля оптических деталей.

Рисунок 142. Кольца Ньютона

Разобрав явление интерференции, перейдём к рассмотрению схем построения интерферометров.

Интерферометр Майкельсона является одной из наиболее распространенных скелетных схем интерферометра, предназначенной для различных применений в случае, когда пространственное совмещение объектов, порождающих интерферирующие волны, невозможно или в силу каких-то причин нежелательно.

Рисунок 143. Интерферометр Майкельсона

Звездный интерферометр Майкельсона - интерферометр для измерения угловых размеров звёзд и углового расстояний между двойными звёздами. Если угловое расстояние между двумя звездами очень мало, в телескоп они видны как одна звезда. В таком случае говорят о двойных звездах и надо провести специальное наблюдение, чтобы отличить их от звезд одиночных. Для этого используется звездный интерферометр Майкельсона, который позволяет к тому же определить угловое расстояние между звездами.

Рисунок 143.Звёздный интерферометр Майкельсона

Лучи света, пришедшего от удаленной звезды, отражается от плоских зеркал M1 - M2, разнесенных на достаточно большое расстояние D, затем отражаются от двух других зеркал и собираются линзой на экране, помещенном в фокальной плоскости. Разнесенные на расстояние D зеркала можно рассматривать как точечные источники, расстояние между которыми и равно D. Вследствие этого в изображении звезды наблюдается интерференционная картина, аналогичная интерференции от двух щелей, расположенных на расстоянии D друг от друга. Угловое расстояние между соседними интерференционными максимумами в этой картине равно θ=λ/D, где λ – длина волны света. При наличии двух близких звёзд, находящихся на малом угловом расстоянии φ друг от друга, в телескопе образуются 2 интерференционные картины, которые также смещены на угол φ и накладываются друг на друга. В зависимости от соотношения углов θ и φ видимость полос суммарной картины будет различной. Изменяя расстояние D и, следовательно, изменяя угол θ, можно добиться совмещения максимумов одной интерференционной картины с минимумами другой, в результате чего видимость полос будет наихудшей. При этих условиях φ=½θ=λ/2D. Измерив D и зная λ, можно определить угловое расстояние между звёздами φ. Аналогично определяются угловые размеры одной звезды. Если звезду рассматривать как равномерно светящийся диск, то расчёт показывает, что исчезновение полос происходит при φ=1.22λ/D. Точность измерения звёздного интерферометра тем больше, чем больше база D. Построен звездный интерферометр, в котором D может достигать 18 м. что позволяет измерять угловое расстояние с точностью до 0,001". Для измерения угловых размеров очень слабых звёзд, свет от которых на уровне шумов, применяют метод корреляции интенсивностей.

Интерферометр Рождественского – это двухлучевой интерферометр, состоящий из 2-х зеркал M1 , M2 и двух параллельных полупрозрачных пластин P1 , P2; M1, P1 и M2, P2 устанавливаются попарно параллельно, но М1 и М2 наклонены относительно друг друга на малый угол; расстояние М1Р1 = М2Р2 и M1P2=P1M2. Луч света разделяется пластиной Р1 на 2 луча, которые после отражений от M1 , M2 и прохождения Р2 оказываются параллельными с разностью фаз

δ = (4πD/λ)(cos i1 - cos i2).

Рисунок 144. Интерферометр Рождественского

Поскольку δ не зависит от положения лучей на зеркалах и определяется лишь углами падения, интерференционная картина будет локализована на бесконечности (или в фокальной плоскости объектива О). Параллельному пучку лучей, падающих на Интерферометр Рождественского, соответствует одна точка интерференционно картины, и, следовательно, для наблюдения всей картины необходим пучок конечной апертуры. Вид картины (порядок и ширина полос, их ориентация) зависит от наклона зеркал M1 и M2. Если, например, ребро двугранного угла, образованного M1 и M2, вертикально (перпендикулярно чертежу), то даже при очень малой разности (i1-i2) полосы сравнительно высокого порядка (D велико) вертикальны и почти параллельны.Если же ребро двугранного угла горизонтально, то в поле зрении находятся горизонтальные полосы низкого порядка (в т.ч. нулевая), видные и в белом свете. Введение в один из пучков к.-л. прозрачного объекта, например пластинки, изменяет ширину, порядок и ориентацию полос: нулевая полоса не горизонтальна и появляется при некоторой промежуточной ориентации M1 и M2 ; при очень большой толщине этой пластинки в белом свете можно видеть только очень узкие, почти вертикальные полосы, когда ребро угла между M1 и M2 почти вертикально. Ширина полос зависит от угла между M1 и Р1, увеличиваясь с его уменьшением. Если все зеркала и пластины параллельны, то в отсутствие неоднородностей ширина полос бесконечна (интерференционное поле равномерно освещено).

Интерферометр Жамена (интерференционный рефрактометр) - интерферометр для измерения показателей преломления газов и жидкостей, а также для определения концентрации примесей в воздухе.

Интерферометр Жамена состоит из двух одинаковых толстых плоскопараллельных пластинок из стекла(или кварца), установленных почти параллельно друг другу. Пучок света падает на первую пластинку под углом i, близким к 45°. Каждый луч пучка после отражения на поверхностях пластинки делится на 2 когерентных луча S1 и S2 , идущих на некотором расстоянии друг от друга, зависящем от толщины пластинок d. Далее на второй пластинке каждый из них аналогичным образом разделяется на два луча. В результате от второй пластинки идут 4 параллельных когерентных луча S1’, S1”, S2’, S2”; Средние пучки S1” И S2’ налагаются и образуют интерференционную картину в фокальной плоскости объектива О1.

Рисунок 145. Схема интерферометра Жамена: ОО – ось вращения компенсаторных пластинок; L – лимб поворота компенсатора; О1 и О2 – объектив и окуляр зрительной трубы.

Разность хода между ними равна

где n п - показатель преломления пластинок.

φ - угол междуними.

При (φ ≈ 5′ - 15′ ∆ мала, поэтому при использовании источника белого света наблюдаются только интерференционные полосы низкою порядка, которые имеют форму прямых линий с белой ахроматической полосой в центре, окружённой системой окрашенных полос.).

Сравнительно большое расстояние между лучами S1 и S2 , позволяет установить на их пути две кюветы К1 и К2 одинаковой длины l с исследуемыми веществами, показатели преломления которых n1 и п2. Возникающая разность хода, что вызовет смещение интерференционной картины.

∆ = (n2-n1)l = δnl

С помощью Интерферометра Жамена проводят количественный анализ газовых смесей - определяют концентрацию некоторых газообразных примесей, например метана и СО2 , в воздухе шахт (т. к. n зависит от природы газа).

Интерферометр Физо- один из простейших интерферометров применяемый главным образом для контроля точности изготовления плоских поверхностей оптич. деталей.

Свет от монохроматического источника L с помощью конденсора O1 диафрагмы D и объектива О2 направляется параллельным пучком на эталонную Э и контролируемую К пластинки (положенные одна на другую) почти перпендикулярно к их поверхностям. При этом строго плоская эталонная и контролируемая поверхности пластинок образуют между собой небольшой угол a. С помощью полупрозрачной пластинки П в отражённом свете наблюдаются интерференционные полосы равной толщины,которыерые локализованы в области воздушного клина между контролируемой и эталонной поверхностями.

Рисунок 146. Интерферометр Физо; а - Вид дефектов сверху на контролируемой пластинке; б - Сечение эталонной и контрольной пластинок. Сечение по линии А-А (угол a и размеры дефектов для наглядности сильно увеличены); в - Вид интерференционной картины полос равной толщины в интерферометре Физо.

Положения этих полос определяются из условия: D=2dn+l/2=ml=const (при п~1), где d - толщина воздушного клина. Если контролируемая поверхность идеально плоская, то полосы равного наклона имеют форму прямых эквидистантных линий, параллельных ребру клина (d=const), расстояние между к-рыми равно z=l/2a (рис. 2, в) (при a=10"" и l~0,5 мкм, z=5 мм). Если же на контролируемой поверхности имеются к--л. дефекты, например, небольшие углубления или выступы, как на рисунке или она не строго плоская, то в области расположения этих дефектов наблюдаются отклонения dz от прямолинейности. При этом относит, величина отклонения dz/z связана с высотой или глубиной дефекта dh соотношением dh=(l/2)dz/z.

Невооружённый глаз может оценить величину dz/z~0,l, что соответствует величине обнаруженного дефекта dh=l/20 (при l=0,633 мкм, dh=0,031 мкм). Знак отклонения позволяет отличить тип дефекта: углубление или выступ. Если контролируемая поверхность имеет форму сферы, то интерференционные полосы имеют форму концентрических окружностей (см. Ньютона кольца). В интерферометре Физо поверхности контролируемой и эталонной пластинок из-за малости угла (угл. секунды) почти полностью соприкасаются друг с другом и в процессе юстировки могут быть повреждены. Поэтому для контроля поверхностей часто используются бесконтактные интерферометры, построенные по схеме интерферометра Майкельсона.

Рисунок 147. Интерферометр Физо конструкции Романова предназначен для бесконтактного измерения формы плоских полированных поверхностей и зеркал. Программное обеспечение предназначено для обработки интерференционных картин с дополнительно введёнными наклонами.

Литература.

  1. Д. Н. Черкасова, А. В. Бахолдин / «Оптические офтальмологические приборы и системы Часть I»/ Санкт-Петербург 2010.
  2. Лукин С.Б. / «КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ ОЭС» / СПбГУ ИТМО 2004г.
  3. Латыев С.М./ « Конструирование точных (оптических) приборов»/ Электронный учебник по дисциплине: "Основы конструирования оптических приборов". СПбГУ ИТМО
  4. А.Л. Андреев / «Автоматизированные телевизионные системы наблюдения» / СПбГУ ИТМО
  5. Митрофанов С.С / «Теоретические и физические основы устройства ОП»/ Электронный учебник по дисциплине: "Прикладная оптика". СПбГУ ИТМО, кафедра КиПОП
  6. http://biggest.su/samyj-bolshoj-teleskop/

7. В. Самохин, Н. Терехова/ «Видеопроекция сегодня и завтра»

8. М.А. Кустикова, М.Н. Мешалкина, В.Л. Мусяков, А.Н. Тимофеев/ «Методические указания к лабораторным работам по разделу «ОПТИКО-ЭЛЕКТРОННЫЕ ГАЗОАНАЛИЗАТОРЫ» курса «ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ»

10. http://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/OPTIKA.html?page=4,6

11. .Захарьевский А.Н. «Интерферометры» 1952.

12. М.М. Мирошников / «Теоретические основы ОЭП»/ «Машиностроение « 1977г.

13. М.М. Русинов / «Габаритные расчёты оптических систем» Москва 1963

14. Г.Г. Ишанин, М. Г. Козлов, К.А. Томский / «Основы светотехники»/ СПб 2004г

Как концепция, лидар уже насчитывает несколько десятилетий. Впрочем, интерес к этой технологии в последние годы резко вырос, поскольку сенсоры становятся меньше, усложняются, а сфера применения продуктов с технологией лидара всё больше расширяется.

Слово лидар представляет собой транслитерацию LIDAR (Light Detection and Ranging - световая система обнаружения и измерения дальности). Это технология получения и обработки информации об удаленных объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах. Лидар как прибор подобен радару, поэтому его применение - это наблюдение и обнаружение, но вместо радиоволн как в радаре в нем используется свет, генерируемый в подавляющем большинстве случаев лазером. Термин лидар зачастую используется равноправно с термином ладар, который означает laser detection and ranging (лазерное обнаружение и измерение дальности), хотя, по мнению Джо Бака, руководителя исследовательских работ в Coherent Technologies, входящего в дивизион космических систем компании Lockheed Martin, эти две концепции с технической точки зрения различны. «Когда вы смотрите на что-то, что может рассматриваться как мягкий объект, например твердые частицы или аэрозоль в воздухе, специалисты стремятся использовать лидар, когда говорят об обнаружении этих объектов. Когда вы смотрите на плотные, твердые объекты, например автомобиль или дерево, тогда вы склоняетесь к термину ладар». Чуть подробнее о лидаре с научной точки зрения смотрите раздел «Лидар: как это работает».

«Лидар был предметом исследований в течение многих десятилетий с момента своего появления в начале 60-х годов», - продолжил Бак. Впрочем, интерес к нему заметно вырос с начала этого столетия благодаря, прежде всего, техническому прогрессу. Он привел в качестве примера визуализацию с помощью синтезированной апертуры. Чем больше телескоп, тем более высокое разрешение объекта может быть получено. Если вам необходимо чрезвычайно высокое разрешение, тогда может понадобиться гораздо более крупная оптическая система, что может быть не очень удобным с практической точки зрения. Визуализация при помощи синтезированной апертуры решает эту проблему за счет использования движущейся платформы и обработки сигналов с целью получения действительной апертуры, которая может гораздо больше физической апертуры. Радиолокаторы с синтезированной апертурой (РСА) используются уже много десятилетий. Однако, только в начале 2000-х начались практические демонстрации формирования оптических изображений с синтезированием апертуры, несмотря на то, что лазеры уже широко использовались в то время. «Реально понадобилось больше времени для разработки оптических источников, которые имели бы достаточную стабильность в широком диапазоне регулировки... Совершенствование материалов, источников света и детекторов (используемых в лидарах) продолжается. Вы не просто обладаете способностью проводить теперь эти измерения, вы способны выполнять их в небольших блоках, что делает системы практичными касательно размеров, веса и энергопотребления».


По данным компании Lockheed Martin, интерес к лидару возрос в начале этого столетия благодаря, конечно же, достижениям в области технологий. На фото система WindTracer компании Lockheed Martin на страже аэропорта Мюнхена

Также становится проще и практичнее собирать данные от лидара (или информацию, собранную лидаром). Традиционно она собиралась с сенсоров летательных аппаратов, говорит Ник Розенгартен, руководитель Geospatial Exploitation Products Group в компании ВАЕ Systems. Впрочем, сегодня сенсоры могут быть установлены на наземных транспортных средствах или даже в заплечных рюкзаках, что подразумевает сбор данных человеком. «Это открывает целый ряд возможностей, данные теперь могут собираться как в помещениях, так и на открытом воздухе», - пояснил Розенгартен. Руководитель дивизиона геопространственных решений в компании Textron Systems Мэт Моррис утверждает, что «лидар представляет собой реально удивительный массив данных, поскольку он предоставляет обширнейшую детализацию поверхности Земли. Он дает гораздо более детализированную и, если можно так выразиться, более оттеночную картинку, чем технология цифровых данных топографических высот DTED (Digital Terrain Elevation Data), которая предоставляет информацию касательно высоты земной поверхности в определенных точках. Возможно, одним из самых мощных сценариев использования, о котором я слышал от наших военных заказчиков, является сценарий развертывания в незнакомой местности, ведь им необходимо знать, куда им предстоит идти... подняться на крышу или перелезть изгородь. Данные DTED не позволяют вам видеть это. Вы не увидите даже зданий».

Моррис отметил, что даже некоторые традиционные данные о высотах точек рельефа местности с высоким разрешением не позволят вам увидеть эти элементы. А вот лидар позволяет это сделать из-за своего «шага позиций» - термин, описывающий дистанцию между позициями, которые могут быть точно показаны в массиве данных. В случае с лидаром «шаг позиций» может быть уменьшен до сантиметров, «поэтому вы можете точно узнать высоту крыши здания или высоту стены или высоту дерева. Это реально повышает уровень трехмерной (3D) ситуационной осведомленности». Кроме того, стоимость сенсоров лидар снижается, как и их размеры, что делает их более доступными. «Десять лет назад сенсорные системы лидаров были очень большими и очень дорогими. Они действительно имели высокое энергопотребление. Но по мере своего развития, совершенствования технологий, платформы становились значительно меньше, снижалось энергопотребление, а качество генерируемых ими данных повысилось».


Городской ландшафт, сгенерированный программным инструментом Lidar Analyst компании Textron. Он позволяет изучать местность, извлекать 3D ландшафты и показывать информацию в программах 3D визуализации


Серия снимков лидара, сделанная с помощью приложения SOCET GXP от ВАЕ Systems. Монтирование мозаики (сбор последовательных снимков) может быть выполнено с данными лидара вне зависимости от того, как они были получены

Моррис сказал, что основное применение лидара в военной области - это 3D планирование и отработка боевых задач. Например, продукт Lidar Analyst его компании для моделирования условий полетов позволяет пользователям принимать большие объемы данных и «быстро генерировать эти 3D модели, затем они могут очень точно планировать свои задачи». То же самое верно и для наземных операций. Моррис пояснил: «Наш продукт используется для планирования путей входа и выхода в район цели, а так как исходные данные имеют высокое разрешение, то можно проводить очень точный анализ обстановки в пределах прямой видимости».

Наряду с Lidar Analyst компания Textron разработала RemoteView - программный продукт анализа изображений, заказчиками которого являются американские военные и разведывательные структуры. Программное обеспечение RemoteView может использовать различные источники данных, в том числе данные с лидара. Компания BAE Systems также предоставляет программное обеспечение (ПО) для геопространственного анализа, ее флагманским продуктом здесь является SOCET GXP, который обеспечивает множество возможностей, включая использование данных лидара. Кроме того, как пояснил Розенгартен, компания разработала технологию GXP Xplorer, которая представляет собой приложение управления данными. Эти технологии вполне подходят для военного применения. Розенгартен, например, упомянул об инструменте для расчета посадочной зоны вертолета, который входит в состав ПО SOCET GXP. «Он может брать данные лидара и предоставляет пользователям информацию о зонах на земле, которых может быть достаточно для посадки вертолета». Например, он может подсказать им, есть ли вертикальные препятствия на пути, например, деревья: «Люди могут использовать этот инструмент для определения зон, которые могут быть лучше всего подходить в качестве эвакуационного пункта во время гуманитарных кризисов». Розенгартен также подчеркнул потенциал метода «монтирование мозаикой», когда множественные массивы данных лидара собираются с конкретной зоны и «сшиваются» друг с другом. Это стало возможным в связи с «повышенной точностью метаданных лидарных сенсоров в комбинации с таким ПО, как например, приложение SOCET GXP от BAE Systems, которое может превратить метаданные в точные зоны на земле, рассчитанные с помощью геопространственных данных. Процесс основывается на данных лидара и не зависит от того, как эти данные собраны».


Компания Lockheed Martin видит возможное военное применение для своей технологии WindTracer. Это коммерческий продукт, в котором используется лидар для измерения ветрового сдвига в аэропортах. Подобная технология может быть использована в военной сфере для повышения точности выброски с воздуха. На фото система WindTracer в аэропорту Дубая

Как это работает: лидар

Лидар работает, подсвечивая цель светом. В лидаре может использоваться свет видимого, ультрафиолетового или ближнего инфракрасного диапазонов. Принцип действия лидара прост. Объект (поверхность) освещается коротким световым импульсом, измеряется время, через которое сигнал вернется к источнику. Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени между передачей светового импульса и его отражением, исходя из постоянной скорости света равной 299792 км/с. Измеряя этот промежуток времени можно вычислить дистанцию между лидаром и отдельной частью объекта и, следовательно, построить изображение объекта на основе его положения относительно лидара.

Сдвиг ветра

Тем временем господин Бак указал на возможное военное применение технологии WindTracer от Lockheed Martin. Коммерческая технология WindTracer использует лидар для измерения ветрового сдвига в аэропортах. Такой же процесс может использоваться в военной сфере, например, для точной выброски с воздуха. «Вам необходимо сбросить запасы с достаточно большой высоты, для этого вы складываете их на поддоны и сбрасываете с парашюта. А теперь посмотрим, где они приземлятся? Вы можете попробовать и предсказать, куда они улетят, но проблема состоит в том, что пока вы снижаетесь, ветровой сдвиг на разных высотах меняет свое направление, - пояснил он. - И как вы после этого предскажите, где поддон приземлится? Если вы можете измерить ветер и оптимизировать траекторию, то вы можете доставить запасы с очень высокой точностью».

Лидар также используется в наземных безэкипажных транспортных средствах. Например, производитель автоматических наземных аппаратов (AHA), компания Roboteam, создал инструмент, названный Top Layer. Это 3D технология картографирования и автономной навигации, которая использует лидар. Top Layer задействует лидар двумя способами, рассказывает руководитель компании Roboteam Шахар Абухазира. Первый позволяет картографирование закрытых пространств в реальном времени. «Иногда видео недостаточно в подземных условиях, например, может быть слишком темно или видимость ухудшилась из-за пыли или дыма, - добавил Абухазира. - Возможности лидара позволяют вам уйти от ситуации с нулевыми ориентацией и пониманием окружающей обстановки... теперь он составляет карту комнаты, он составляет карту тоннеля. Незамедлительно вы можете понять обстановку, даже если вы ничего не видите и даже, если вы не знаете, где вы находитесь».

Второе применение лидара заключается в его автономности, помощи оператору в контролировании более одной системы в любой данный момент. «Один оператор может контролировать один AHA, но есть два других AHA, которые просто отслеживают управляемый человеком аппарат и следуют за ним автоматически», - пояснил он. Подобным же образом солдат может войти в помещение, а АНА просто следует за ним, то есть нет необходимости откладывать в сторону для того, чтобы управлять аппаратом. «Это делает работу простой и интуитивной». Более крупный AHA Probot компании Roboteam также имеет на борту лидар, который помогает проходить ему большие дистанции. «Вы не можете требовать от оператора, чтобы он жал кнопку три дня подряд... вы используете лидарный сенсор для того, чтобы просто следовать за солдатами, или следовать за машиной или даже в автоматическом режиме перемещаться от одного пункта к другому, лидар в этих ситуациях поможет избежать препятствий». Абухазира ожидает в будущем крупных прорывов в этой области. Например, пользователи хотели иметь ситуацию, в которой человек и АНА взаимодействуют подобно двум солдатам. «Вы не контролируете друг друга. Вы смотрите друг на друга, вы зовете друг друга и действуете точно так, как должны действовать. Я полагаю, что в известном смысле мы получим этот уровень общения между людьми и системами. Это будет более эффективно. Я считаю, что лидары ведут нас в этом направлении».


Программный продукт TopLayer компании Roboteam позволяет AHA картографировать закрытые пространства в реальном времени. Порой видеосъемки бывает недостаточно в этих условиях: может быть либо темно, либо видимость недостаточна из-за пыли и дыма

Идем под землю

Абухазира также надеется, что лидарные сенсоры улучшат проведение операций в опасных подземных условиях. Лидарные сенсоры дают дополнительную информацию, выполняя картографирование тоннелей. Кроме того, он заметил, что порой в небольшом и темном тоннеле оператор может даже не понять, что ведет AHA не в том направлении. «Лидарные сенсоры работают как GPS в реальном времени и делают процесс похожим на видеоигру. Вы можете видеть вашу систему в тоннеле, вы знаете, куда движетесь в реальном времени».

Стоить отметить, что лидарные сенсоры это еще один источник данных и не должны рассматриваться как прямая замена радара. Бак заметил, что имеются большая разница в длине волн этих двух технологий, которые имеют свои преимущества и недостатки. Зачастую лучшим решением является использование обеих технологий, например, проведение измерения параметров ветра при помощи аэрозольного облака. Более короткие длины волн оптических сенсоров обеспечивают лучшее определение направления по сравнению с более длинными волнами радиочастотного сенсора (радара). Впрочем, свойства пропускания атмосферы очень разнятся для двух типов сенсоров. «Радар способен проходить сквозь облака определенных типов, с которыми лидару было бы сложно справиться. Но в тумане, например, лидар может показать себя чуть лучше радара».

Розенгартен сказал, что сочетание лидара с другими источниками света, например, панхроматическими данными (когда изображение строится с использованием широкого диапазона световых волн) даст полную картинку исследуемой зоны. Хорошим примером здесь является определение посадочной площадки для вертолета. Лидар может просканировать зону и сказать, что она имеет нулевой уклон, не принимая во внимание, что фактически он смотрит на озеро. Этот тип информации может быть получен за счет использования других источников света. Розенгартен считает, что промышленность, в конечном счете, займется слиянием технологий, сведением вместе различных источников визуальных и иных световых данных. «Она найдет способы свести все данные под одним зонтиком... Получение точной и исчерпывающей информации - это не просто использование данных лидара, а комплексная задача с привлечением всех доступных технологий».

По материалам сайтов:
www.nationaldefensemagazine.org
www.lockheedmartin.com
www.baesystems.com
www.textron.com
www.robo-team.com
www.robotshop.com
www.Geo-Plus.com
www.nplus1.ru